19 research outputs found

    Graph Attention Multi-Agent Fleet Autonomy for Advanced Air Mobility

    Full text link
    Autonomous mobility is emerging as a new mode of urban transportation for moving cargo and passengers. However, such fleet coordination schemes face significant challenges in scaling to accommodate fast-growing fleet sizes that vary in their operational range, capacity, and communication capabilities. We introduce the concept of partially observable advanced air mobility games to coordinate a fleet of aerial vehicle agents accounting for their heterogeneity and self-interest inherent to commercial mobility fleets. We propose a novel heterogeneous graph attention-based encoder-decoder (HetGAT Enc-Dec) neural network to construct a generalizable stochastic policy stemming from the inter- and intra-agent relations within the mobility system. We train our policy by leveraging deep multi-agent reinforcement learning, allowing decentralized decision-making for the agents using their local observations. Through extensive experimentation, we show that the fleets operating under the HetGAT Enc-Dec policy outperform other state-of-the-art graph neural network-based policies by achieving the highest fleet reward and fulfillment ratios in an on-demand mobility network.Comment: 12 pages, 12 figures, 3 table

    Uncertainty-Aware Online Merge Planning with Learned Driver Behavior

    Full text link
    Safe and reliable autonomy solutions are a critical component of next-generation intelligent transportation systems. Autonomous vehicles in such systems must reason about complex and dynamic driving scenes in real time and anticipate the behavior of nearby drivers. Human driving behavior is highly nuanced and specific to individual traffic participants. For example, drivers might display cooperative or non-cooperative behaviors in the presence of merging vehicles. These behaviors must be estimated and incorporated in the planning process for safe and efficient driving. In this work, we present a framework for estimating the cooperation level of drivers on a freeway and plan merging maneuvers with the drivers' latent behaviors explicitly modeled. The latent parameter estimation problem is solved using a particle filter to approximate the probability distribution over the cooperation level. A partially observable Markov decision process (POMDP) that includes the latent state estimate is solved online to extract a policy for a merging vehicle. We evaluate our method in a high-fidelity automotive simulator against methods that are agnostic to latent states or rely on a priori\textit{a priori} assumptions about actor behavior

    Modeling Human Driving Behavior through Generative Adversarial Imitation Learning

    Full text link
    Imitation learning is an approach for generating intelligent behavior when the cost function is unknown or difficult to specify. Building upon work in inverse reinforcement learning (IRL), Generative Adversarial Imitation Learning (GAIL) aims to provide effective imitation even for problems with large or continuous state and action spaces. Driver modeling is one example of a problem where the state and action spaces are continuous. Human driving behavior is characterized by non-linearity and stochasticity, and the underlying cost function is unknown. As a result, learning from human driving demonstrations is a promising approach for generating human-like driving behavior. This article describes the use of GAIL for learning-based driver modeling. Because driver modeling is inherently a multi-agent problem, where the interaction between agents needs to be modeled, this paper describes a parameter-sharing extension of GAIL called PS-GAIL to tackle multi-agent driver modeling. In addition, GAIL is domain agnostic, making it difficult to encode specific knowledge relevant to driving in the learning process. This paper describes Reward Augmented Imitation Learning (RAIL), which modifies the reward signal to provide domain-specific knowledge to the agent. Finally, human demonstrations are dependent upon latent factors that may not be captured by GAIL. This paper describes Burn-InfoGAIL, which allows for disentanglement of latent variability in demonstrations. Imitation learning experiments are performed using NGSIM, a real-world highway driving dataset. Experiments show that these modifications to GAIL can successfully model highway driving behavior, accurately replicating human demonstrations and generating realistic, emergent behavior in the traffic flow arising from the interaction between driving agents.Comment: 28 pages, 8 figures. arXiv admin note: text overlap with arXiv:1803.0104
    corecore